您現在的位置是:首頁 > 攝影首頁攝影

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。

由 計算機基礎 發表于 攝影2021-05-09
簡介SRAM在設計上使用的電晶體數量較多,價格較高,且不易做成大容量,不過由於其速度快, 因此整合到CPU內成為快取記憶體以加快資料的存取是個不錯的方式喔

按放射向頭還按記憶體嗎

記憶體

如同圖2。1。3、技嘉主機板示意圖中的右上方部分的那四根插槽,那就是主記憶體的插槽了。 主記憶體插槽中間通常有個突起物將整個插槽稍微切分成為兩個不等長的距離, 這樣的設計可以讓使用者在安裝主記憶體時,不至於前後腳位安插錯誤,是一種防呆的設計喔。

前面提到CPU所使用的資料都是來自於主記憶體(main memory),不論是軟體程式還是資料,都必須要讀入主記憶體後CPU才能利用。 個人計算機的主記憶體主要元件為動態隨機訪問記憶體(Dynamic Random Access Memory, DRAM), 隨機訪問記憶體只有在通電時才能記錄與使用,斷電後資料就消失了。因此我們也稱這種RAM為揮發性記憶體。

DRAM根據技術的更新又分好幾代,而使用上較廣泛的有所謂的SDRAM與DDR SDRAM兩種。 這兩種記憶體的差別除了在於腳位與工作電壓上的不同之外,DDR是所謂的雙倍資料傳送速度(Double Data Rate), 他可以在一次工作週期中進行兩次資料的傳送,感覺上就好像是CPU的倍頻啦! 所以傳輸頻率方面比SDRAM還要好。新一代的PC大多使用DDR記憶體了。 下表列出SDRAM與DDR SDRAM的型號與頻率及頻寬之間的關係。

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。

DDR SDRAM又依據技術的發展,有DDR, DDRII, DDRIII等等,其中,DDRII 的頻率倍數則是 4 倍喔!

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。

主記憶體除了頻率/頻寬與型號需要考慮之外,記憶體的容量也是很重要的喔! 因為所有的資料都得要載入記憶體當中才能夠被CPU判讀,如果記憶體容量不夠大的話將會導致某些大容量資料無法被完整的載入, 此時已存在記憶體當中但暫時沒有被使用到的資料必須要先被釋放,使得可用記憶體容量大於該資料,那份新資料才能夠被載入呢! 所以,通常越大的記憶體代表越快速的系統,這是因為系統不用常常釋放一些記憶體內部的資料。 以伺服器來說,主記憶體的容量有時比CPU的速度還要來的重要的!

雙通道設計

由於所有的資料都必須要存放在主記憶體,所以主記憶體的資料寬度當然是越大越好。 但傳統的系統匯流排寬度一般大約僅達64位,為了要加大這個寬度,因此晶片組廠商就將兩個主記憶體彙整在一起, 如果一支記憶體可達64位,兩支記憶體就可以達到128位了,這就是雙通道的設計理念。

如上所述,要啟用雙通道的功能你必須要安插兩支(或四支)主記憶體,這兩支記憶體最好連型號都一模一樣比較好, 這是因為啟動雙通道記憶體功能時,資料是同步寫入/讀出這一對主記憶體中,如此才能夠提升整體的頻寬啊! 所以當然除了容量大小要一致之外,型號也最好相同啦!

你有沒有發現圖 2。1。3、技嘉主機板示意圖上那四根記憶體插槽的顏色呢?是否分為兩種顏色,且兩兩成對? 為什麼要這樣設計?答出來了嗎?是啦!這種顏色的設計就是為了雙通道來的!要啟動雙通道的功能時, 你必須要將兩根容量相同的主記憶體插在相同顏色的插槽當中喔!

CPU頻率與主記憶體的關係

理論上,CPU與主記憶體的外頻應該要相同才好。不過,因為技術方面的提升,因此這兩者的頻率速度不會相同, 但外頻則應該是一致的較佳。舉例來說,上面提到的Intel E8400 CPU外頻為333MHz,則應該選用DDR II 667這個型號, 因為該記憶體型號的外頻為333MHz之故喔!

DRAM與SRAM

除了主記憶體之外,事實上整部個人計算機當中還有許許多多的記憶體存在喔!最為我們所知的就是CPU內的第二層快取記憶體。 我們現在知道CPU的資料都是由主記憶體提供,但主記憶體的資料畢竟得經由北橋送到CPU內。 如果某些很常用的程式或資料可以放置到CPU內部的話,那麼CPU資料的讀取就不需要透過北橋了! 對於效能來說不就可以大大的提升了?這就是第二層快取的設計概念。第二層快取與主記憶體及CPU的關係如下圖所示:

圖2。2。1、記憶體相關性

因為第二層快取(L2 cache)整合到CPU內部,因此這個L2記憶體的速度必須要CPU頻率相同。 使用DRAM是無法達到這個頻率速度的,此時就需要靜態隨機訪問記憶體(Static Random Access Memory, SRAM)的幫忙了。 SRAM在設計上使用的電晶體數量較多,價格較高,且不易做成大容量,不過由於其速度快, 因此整合到CPU內成為快取記憶體以加快資料的存取是個不錯的方式喔!新一代的CPU都有內建容量不等的L2快取在CPU內部, 以加快CPU的運作效能。

只讀記憶體(ROM)

主機板上面的元件是非常多的,而每個元件的引數又具有可調整性。舉例來說,CPU與記憶體的頻率是可調整的; 而主機板上面如果有內建的網路卡或者是顯示卡時,該功能是否要啟動與該功能的各項引數, 是被記錄到主機板上頭的一個稱為CMOS的晶片上,這個晶片需要藉著額外的電源來發揮記錄功能, 這也是為什麼你的主機板上面會有一顆電池的緣故。

那CMOS內的資料如何讀取與更新呢?還記得你的計算機在開機的時候可以按下[Del]按鍵來進入一個名為BIOS的畫面吧?BIOS(Basic Input Output System)是一套程式,這套程式是寫死到主機板上面的一個記憶體晶片中, 這個記憶體晶片在沒有通電時也能夠將資料記錄下來,那就是隻讀記憶體(Read Only Memory, ROM)。 ROM是一種非揮發性的記憶體。另外,BIOS對於個人計算機來說是非常重要的, 因為他是系統在開機的時候首先會去讀取的一個小程式喔!

另外,韌體(firmware)(注7)很多也是使用ROM來進行軟體的寫入的。 韌體像軟體一樣也是一個被計算機所執行的程式,然而他是對於硬體內部而言更加重要的部分。例如BIOS就是一個韌體, BIOS雖然對於我們日常操作計算機系統沒有什麼太大的關係,但是他卻控制著開機時各項硬體引數的取得! 所以我們會知道很多的硬體上頭都會有ROM來寫入韌體這個軟體。

BIOS 對計算機系統來講是非常重要的,因為他掌握了系統硬體的詳細資訊與開機裝置的選擇等等。但是計算機發展的速度太快了, 因此 BIOS 程式碼也可能需要作適度的修改才行,所以你才會在很多主機板官網找到 BIOS 的更新程式啊!但是 BIOS 原本使用的是無法改寫的 ROM ,因此根本無法修正 BIOS 程式碼!為此,現在的 BIOS 通常是寫入類似快閃記憶體 (flash) 或 EEPROM (注8) 中。(注9)

顯示卡

顯示卡插槽如同圖 2。1。3、技嘉主機板示意圖所示,是在中央較長的插槽! 這張主機板中提供了兩個顯示卡插槽喔!

顯示卡又稱為VGA(Video Graphics Array),他對於圖形影像的顯示扮演相當關鍵的角色。 一般對於圖形影像的顯示重點在於解析度與色彩深度,因為每個影象顯示的顏色會佔用掉記憶體, 因此顯示卡上面會有一個記憶體的容量,這個顯示卡記憶體容量將會影響到最終你的螢幕解析度與色彩深度的喔!

除了顯示卡記憶體之外,現在由於三度空間遊戲(3D game)與一些3D動畫的流行,因此顯示卡的『運算能力』越來越重要。 一些3D的運算早期是交給CPU去運作的,但是CPU並非完全針對這些3D來進行設計的,而且CPU平時已經非常忙碌了呢! 所以後來顯示卡廠商直接在顯示卡上面嵌入一個3D加速的晶片,這就是所謂的GPU稱謂的由來。

顯示卡主要也是透過北橋晶片與CPU、主記憶體等溝通。如前面提到的,對於圖形影像(尤其是3D遊戲)來說, 顯示卡也是需要高速運算的一個元件,所以資料的傳輸也是越快越好!因此顯示卡的規格由早期的PCI導向AGP, 近期AGP又被PCI-Express規格所取代了。如前面技嘉主機板圖示當中看到的就是PCI-Express的插槽。 這些插槽最大的差異就是在資料傳輸的頻寬了!如下所示:

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。

比較特殊的是,PCIe(PCI-Express)使用的是類似管線的概念來處理,每條管線可以具有250MBytes/s的頻寬效能, 管線越大(最大可達x32)則總頻寬越高!目前顯示卡大多使用x16的PCIe規格,這個規格至少可以達到4GBytes/s的頻寬! 比起AGP是快很多的!此外,新的PCIe 2。0規格也已經推出了,這個規格又可將每個管線的效能提升一倍呢! 好可怕的傳輸量。。。。

如果你的主機是用來打3D遊戲的,那麼顯示卡的選購是非常重要喔!如果你的主機是用來做為網路伺服器的, 那麼簡單的入門級顯示卡對你的主機來說就非常夠用了!因為網路伺服器很少用到3D與圖形影像功能。

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。

硬碟與儲存裝置

計算機總是需要記錄與讀取資料的,而這些資料當然不可能每次都由使用者經過鍵盤來打字!所以就需要有儲存裝置咯。 計算機系統上面的儲存裝置包括有:硬碟、軟盤、MO、CD、DVD、磁帶機、隨身碟(快閃記憶體)、還有新一代的藍光光碟機等, 乃至於大型機器的區域網路儲存裝置(SAN, NAS)等等,都是可以用來儲存資料的。而其中最常見的應該就是硬碟了吧!

硬碟的物理組成

大家應該都看過硬碟吧!硬碟依據桌上型與筆記型計算機而有分為3。5寸及2。5寸的大小。我們以3。5寸的桌上型計算機使用硬碟來說明。 在硬碟盒裡面其實是由許許多多的圓形磁碟盤、機械手臂、 磁碟讀取頭與主軸馬達所組成的,整個內部如同下圖所示:

圖2。4。1、硬碟物理構造(圖片取自維基百科)

實際的資料都是寫在具有磁性物質的磁碟盤上頭,而讀寫主要是透過在機械手臂上的讀取頭(head)來達成。 實際運作時, 主軸馬達讓磁碟盤轉動,然後機械手臂可伸展讓讀取頭在磁碟盤上頭進行讀寫的動作。 另外,由於單一磁碟盤的容量有限,因此有的硬碟內部會有兩個以上的磁碟盤喔!

磁碟盤上的資料

既然資料都是寫入磁碟盤上頭,那麼磁碟盤上頭的資料又是如何寫入的呢? 其實磁碟盤上頭的資料有點像下面的圖示所示:

圖2。4。2、磁碟盤上的資料格式

整個磁碟盤上頭好像有多個同心圓繪製出的圓形圖,而由圓心以放射狀的方式分割出磁碟的最小儲存單位,那就是磁區(Sector), 在物理組成分面,每個磁區大小為512Bytes,這個值是不會改變的。而磁區組成一個圓就成為磁軌(track), 如果是在多碟的硬碟上面,在所有磁碟盤上面的同一個磁軌可以組成一個磁柱(Cylinder), 磁柱也是一般我們分割硬碟時的最小單位了!

在計算整個硬碟的儲存量時,簡單的計算公式就是:『header數量 * 每個header負責的磁柱數量 * 每個磁柱所含有的磁區數量 * 磁區的容量』,單位換算為『header * cylinder/header * secter/cylinder * 512bytes/secter』,簡單的寫法如下: Head x Cylinder x Sector x 512 Bytes。 不過要注意的是,一般硬碟製造商在顯示硬碟的容量時,大多是以十進位來編號,因此市售的500GB硬碟, 理論上僅會有460GBytes左右的容量喔!

傳輸介面

由於傳輸速度的需求提升,目前硬碟與主機系統的聯絡主要有幾種傳輸介面規格:

圖2。4。3、兩款硬碟介面(左邊為IDE介面,右邊為SATA介面)

IDE介面:

如同圖 2。1。3、技嘉主機板圖示右側的較寬的插槽所示,那就是IDE的介面插槽。 IDE介面插槽所使用的排線較寬,每條排線上面可以接兩個IDE裝置,由於可以接兩個裝置,那為了判別兩個裝置的主/從架構, 因此這種磁碟機上面需要調整跳針(Jump)成為Master或slave才行喔!這種介面的最高傳輸速度為Ultra 133規格, 亦即每秒理論傳輸速度可達133MBytes。

圖2。4。4、IDE 介面的排線 (圖示取自 Seagate 網站)

SATA介面:

如同技嘉主機板圖示右下方所示為SATA硬碟的連線介面插槽。 我們可以看到該插槽要比IDE介面的小很多,每條SATA連線線僅能接一個SATA裝置。SATA介面除了速度較快之外, 由於其排線較細小所以有利於主機機殼內部的散熱與安裝!目前SATA已經發展到了第二代, 其速度由SATA-1的每秒150MBytes提升到SATA-2每秒300MBytes的傳輸速度喔, 也因此目前主流的個人計算機硬碟已經被SATA取代了。SATA的插槽示意圖如下所示:

圖2。4。5、SATA 介面的排線 (圖示取自 Seagate 網站)

由於SATA一條排線僅接一顆硬碟,所以你不需要調整跳針。不過一張主機板上面SATA插槽的數量並不是固定的, 且每個插槽都有編號,在連線SATA硬碟與主機板的時候,還是需要留意一下。

SCSI介面:

另一種常見於工作站等級以上的硬碟傳輸介面為SCSI介面,這種介面的硬碟在控制器上含有一顆處理器, 所以除了運轉速度快之外,也比較不會耗費CPU資源喔!在個人計算機上面這種介面的硬碟不常見啦!

選購與運轉須知

如果你想要增加一顆硬碟在你的主機裡頭時,除了需要考慮你的主機板可接受的插槽介面(IDE/SATA)之外, 還有什麼要注意的呢?

容量

通常首先要考量的就是容量的問題!目前(2009)主流市場硬碟容量已經到達320GB以上,甚至有的廠商已經生產高達 2TB 的產品呢!硬碟可能可以算是一種消耗品,要注意重要資料還是得常常備份出來喔!

緩衝記憶體

硬碟上頭含有一個緩衝記憶體,這個記憶體主要可以將硬碟內常使用的資料快取起來,以加速系統的讀取效能。 通常這個緩衝記憶體越大越好,因為緩衝記憶體的速度要比資料從硬碟盤中被找出來要快的多了! 目前主流的產品可達16MB左右的記憶體大小喔。

轉速

因為硬碟主要是利用主軸馬達轉動磁碟盤來存取,因此轉速的快慢會影響到效能。 主流的桌上型計算機硬碟為每分鐘7200轉,筆記型計算機則是5400轉。有的廠商也有推出高達10000轉的硬碟, 若有高效能的資料存取需求,可以考慮購買高轉速硬碟。

運轉須知

由於硬碟內部機械手臂上的磁頭與硬碟盤的接觸是很細微的空間, 如果有抖動或者是髒汙在磁頭與硬碟盤之間就會造成資料的損毀或者是實體硬碟整個損毀~ 因此,正確的使用計算機的方式,應該是在計算機通電之後,就絕對不要移動主機,並免抖動到硬碟, 而導致整個硬碟資料發生問題啊!另外,也不要隨便將插頭拔掉就以為是順利關機!因為機械手臂必須要歸回原位, 所以使用作業系統的正常關機方式,才能夠有比較好的硬碟保養啊!因為他會讓硬碟的機械手臂歸回原位啊!

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。

PCI介面卡

PCI介面卡的插槽就如同圖2。1。3、技嘉主機板示意圖所示的左下方那個白色的插槽, 這種PCI插槽通常會提供多個給使用者,如果使用者有額外需要的功能卡, 就能夠安插在這種PCI介面插槽上。

我們在前面顯示卡的部分稍微談過PCI介面,事實上有相當多的元件是使用PCI介面作為傳輸的, 例如網路卡、音效卡、特殊功能卡等等。但由於PCI Express規格的發展,很多製造商都往PCIE介面開發硬體了。 不過還是有很多硬體使用PCI介面啦,例如大賣場上面常見的網路卡就是一個。

目前在個人計算機上面常見到的網路卡是一種稱為乙太網路(Ethernet)的規格,目前乙太網路卡速度輕輕鬆鬆的就能到達10/100/1000 Mbits/second的速度,但同樣速度的乙太網路卡所支援的標準可能不太一樣,因此造成的價差是非常大的。 如果想要在伺服器主機上面安裝新的網路卡時,得要特別注意標準的差異呢!

由於各元件的價格直直落,現在主機板上面通常已經整合了相當多的裝置元件了! 常見整合到主機板的元件包括音效卡、網路卡、USB控制卡、顯示卡、磁碟陣列卡等等。 你可以在主機板上面發現很多方形的晶片,那通常是一些個別的裝置晶片喔。 由於主機板已經整合了很多常用的功能晶片,所以現在的主機板上面所安插的PCI介面卡就少很多了!

主機板

主機板可以說是整部主機相當重要的一個部分,因為上面我們所談到的所有元件都是安插在主機板上面的呢! 而主機板上面負責溝通各個元件的就是晶片組,如同圖2。1。1、Intel晶片組圖示所示, 圖中我們也可以發現晶片組一般分為北橋與南橋喔!北橋負責CPU/RAM/VGA等的連線,南橋則負責PCI介面與速度較慢的I/O裝置。

由於晶片組負責所有裝置的溝通,所以事實上晶片組(尤其是北橋)也是一個可能會散發出高熱量的元件。 因此在主機板上面常會發現一些外接的小風扇或者是散熱片在這組晶片上面。在本章所附的主機板圖示中, 技嘉使用較高散熱能力的熱導管技術,因此你可以發現圖中的南橋與北橋上面覆蓋著黃銅色的散熱片, 且連線著數根圓形導管,主要就是為了要散熱的。

技嘉電腦電腦科技有限公司:按放射向頭還按記憶體嗎記憶體如同圖2。。